Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report the discovery and characterization of two small transiting planets orbiting the bright M3.0V star TOI-1468 (LSPM J0106+1913), whose transit signals were detected in the photometric time series in three sectors of the TESS mission. We confirm the planetary nature of both of them using precise radial velocity measurements from the CARMENES and MAROON-X spectrographs, and supplement them with ground-based transit photometry. A joint analysis of all these data reveals that the shorter-period planet, TOI-1468 b ( P b = 1.88 d), has a planetary mass of M b = 3.21 ± 0.24 M ⊕ and a radius of R b = 1.280 −0.039 +0.038 R ⊕ , resulting in a density of ρ b = 8.39 −0.92 +1.05 g cm −3 , which is consistent with a mostly rocky composition. For the outer planet, TOI-1468 c ( P c = 15.53 d), we derive a mass of M c = 6.64 −0.68 +0.67 M ⊕ ,aradius of R c = 2.06 ± 0.04 R ⊕ , and a bulk density of ρ c = 2.00 −0.19 +0.21 g cm −3 , which corresponds to a rocky core composition with a H/He gas envelope. These planets are located on opposite sides of the radius valley, making our system an interesting discovery as there are only a handful of other systems with the same properties. This discovery can further help determine a more precise location of the radius valley for small planets around M dwarfs and, therefore, shed more light on planet formation and evolution scenarios.more » « less
-
Planets with radii between that of the Earth and Neptune (hereafter referred to as `sub-Neptunes') are found in close-in orbits around more than half of all Sun-like stars1,2. However, their composition, formation and evolution remain poorly understood3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R⊕ to 2.85R⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.more » « less
-
A search for high-mass resonances decaying into a -lepton and a neutrino using proton-proton collisions at a center-of-mass energy of is presented. The full run 2 data sample corresponding to an integrated luminosity of recorded by the ATLAS experiment in the years 2015–2018 is analyzed. The -lepton is reconstructed in its hadronic decay modes and the total transverse momentum carried out by neutrinos is inferred from the reconstructed missing transverse momentum. The search for new physics is performed on the transverse mass between the -lepton and the missing transverse momentum. No excess of events above the Standard Model expectation is observed and upper exclusion limits are set on the production cross section. Heavy vector bosons with masses up to 5.0 TeV are excluded at 95% confidence level, assuming that they have the same couplings as the Standard Model boson. For nonuniversal couplings, bosons are excluded for masses less than 3.5–5.0 TeV, depending on the model parameters. In addition, model-independent limits on the visible cross section times branching ratio are determined as a function of the lower threshold on the transverse mass of the -lepton and missing transverse momentum. © 2024 CERN, for the ATLAS Collaboration2024CERNmore » « less
-
A<sc>bstract</sc> Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb−1ofppcollision data at$$ \sqrt{s} $$ = 13 TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be$$ {1.04}_{-0.09}^{+0.10} $$ . Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with aWorZboson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with ap-value of 93%. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.more » « less
-
A bstract A search for Higgs boson pair production in events with two b -jets and two τ -leptons is presented, using a proton–proton collision dataset with an integrated luminosity of 139 fb − 1 collected at $$ \sqrt{s} $$ s = 13 TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one τ -lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of 3 . 1 σ (2 . 0 σ ). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance.more » « less
-
Abstract This paper presents a search for dark matter,$$\chi $$ , using events with a single top quark and an energeticWboson. The analysis is based on proton–proton collision data collected with the ATLAS experiment at$$\sqrt{s}=$$ 13 TeV during LHC Run 2 (2015–2018), corresponding to an integrated luminosity of 139 fb$$^{-1}$$ . The search considers final states with zero or one charged lepton (electron or muon), at least oneb-jet and large missing transverse momentum. In addition, a result from a previous search considering two-charged-lepton final states is included in the interpretation of the results. The data are found to be in good agreement with the Standard Model predictions and the results are interpreted in terms of 95% confidence-level exclusion limits in the context of a class of dark matter models involving an extended two-Higgs-doublet sector together with a pseudoscalar mediator particle. The search is particularly sensitive to on-shell production of the charged Higgs boson state,$$H^{\pm }$$ , arising from the two-Higgs-doublet mixing, and its semi-invisible decays via the mediator particle,a:$$H^{\pm } \rightarrow W^\pm a (\rightarrow \chi \chi )$$ . Signal models with$$H^{\pm }$$ masses up to 1.5 TeV andamasses up to 350 GeV are excluded assuming a$$\tan \beta $$ value of 1. For masses ofaof 150 (250) GeV,$$\tan \beta $$ values up to 2 are excluded for$$H^{\pm }$$ masses between 200 (400) GeV and 1.5 TeV. Signals with$$\tan \beta $$ values between 20 and 30 are excluded for$$H^{\pm }$$ masses between 500 and 800 GeV.more » « less
-
A<sc>bstract</sc> This article presents a search for new resonances decaying into aZorWboson and a 125 GeV Higgs bosonh, and it targets the$$ \nu \overline{\nu}b\overline{b} $$ ,$$ {\ell}^{+}{\ell}^{-}b\overline{b} $$ , or$$ {\ell}^{\pm}\nu b\overline{b} $$ final states, whereℓ=eorμ, in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions ofZhorWhcandidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model.more » « less
-
A<sc>bstract</sc> A search for pair-produced scalar and vector leptoquarks decaying into quarks and leptons of different generations is presented. It uses the full LHC Run 2 (2015–2018) data set of 139 fb−1collected with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of$$ \sqrt{s} $$ = 13 TeV. Scalar leptoquarks with charge −(1/3)eas well as scalar and vector leptoquarks with charge +(2/3)eare considered. All possible decays of the pair-produced leptoquarks into quarks of the third generation (t, b) and charged or neutral leptons of the first or second generation (e, μ, ν) with exactly one electron or muon in the final state are investigated. No significant deviations from the Standard Model expectation are observed. Upper limits on the production cross-section are provided for eight models as a function of the leptoquark mass and the branching ratio of the leptoquark into the charged or neutral lepton. In addition, lower limits on the leptoquark masses are derived for all models across a range of branching ratios. Two of these models have the goal of providing an explanation for the recentB-anomalies. In both models, a vector leptoquark decays into charged and neutral leptons of the second generation with a similar branching fraction. Lower limits of 1980 GeV and 1710 GeV are set on the leptoquark mass for these two models.more » « less
An official website of the United States government

Full Text Available